Teorema de los ceros de Hilbert

El Hilberts Nullstellensatz (en alemán: "teorema de los lugares de los ceros") es un teorema en Geometría algebraica que relaciona variedades e ideales en anillos de polinomios sobre cuerpos algebraicamente cerrados. Fue probado inicialmente por David Hilbert. Sea un cuerpo algebraicamente cerrado (como el de los números complejos), considera el anillo de polinomios y sea un ideal en este anillo. La variedad afín definida por este ideal consiste de todas las n-tuplas en tal que para todo en . El teorema de los ceros de Hilbert nos dice que si es un polinomio en que se anula en la variedad , i.e. para todo x en , entonces existe un número natural r tal que pr está en I. Un corolario inmediato es la "Nullstellensatz débil": si I es un ideal propio en K[X1,X2,... , Xn], entonces V(I) no puede ser vacío, i.e. existe un cero común para todos los polinomios del ideal. Esta es la razón para el nombre del teorema; que es fácilmente demostrable en esta forma "débil"....

Este sitio web utiliza cookies, propias y de terceros con la finalidad de obtener información estadística en base a los datos de navegación. Si continúa navegando, se entiende que acepta su uso y en caso de no aceptar su instalación deberá visitar el apartado de información, donde le explicamos la forma de eliminarlas o rechazarlas.
Aceptar | Más información